Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Iran J Allergy Asthma Immunol ; 22(1): 91-98, 2023 Feb 20.
Article in English | MEDLINE | ID: covidwho-2260532

ABSTRACT

Some risk causes may be associated with the severity of COVID-19. The central host-pathogen factors might affect infection are human receptor angiotensin-converting enzyme 2 (ACE2), trans-membrane protease serine 2 (TMPRSS2), and SARS-CoV-2 surface spike (S)-protein. The main purpose of this study was to determine the differences in the expression the metalloproteinases-2  (MMP-2), MMP-9, ACE2, and TMPRSS2 genes and their correlation with lymphopenia in the mild and severe types of the COVID-19 patients. Eighty-eight patients, aged 36 to 60 years old with the mild (n=44) and severe (n=44) types of COVID-19 were enrolled. Total RNA was isolated from the peripheral blood mononuclear cells (PBMCs). The changes of MMP-2, MMP-9, ACE2 and TMPRSS2 gene expression in PBMCs from mild and severe COVID-19 patients were examined by the real time-quantitative polymerase chain reaction (RT-qPCR) assay and, compared between the groups. Data were collected from May 2021 to March 2022. The mean age of the patients in both groups was 48 (interquartile range, 36-60), and there were no appreciable differences in age or gender distribution between the two groups. The present study showed that a significant increase in the expression of ACE2, TMPRSS2, MMP-2, and MMP-9 genes in the severe type of the COVID-19 patients compared, to the mild type of the COVID-19 patients. Overall, it suggests the expression levels of these genes on the PBMC surface in the immune system are susceptible to infection by SARS-COV-2 and therefore could potentially predict the patients' outcome.


Subject(s)
COVID-19 , Lymphopenia , Humans , Adult , Middle Aged , COVID-19/genetics , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Leukocytes, Mononuclear , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Lymphopenia/genetics , Serine Endopeptidases/genetics
2.
J Allergy Clin Immunol ; 151(4): 911-921, 2023 04.
Article in English | MEDLINE | ID: covidwho-2235011

ABSTRACT

BACKGROUND: Lymphopenia, particularly when restricted to the T-cell compartment, has been described as one of the major clinical hallmarks in patients with coronavirus disease 2019 (COVID-19) and proposed as an indicator of disease severity. Although several mechanisms fostering COVID-19-related lymphopenia have been described, including cell apoptosis and tissue homing, the underlying causes of the decline in T-cell count and function are still not completely understood. OBJECTIVE: Given that viral infections can directly target thymic microenvironment and impair the process of T-cell generation, we sought to investigate the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on thymic function. METHODS: We performed molecular quantification of T-cell receptor excision circles and κ-deleting recombination excision circles to assess, respectively, T- and B-cell neogenesis in SARS-CoV-2-infected patients. We developed a system for in vitro culture of primary human thymic epithelial cells (TECs) to mechanistically investigate the impact of SARS-CoV-2 on TEC function. RESULTS: We showed that patients with COVID-19 had reduced thymic function that was inversely associated with the severity of the disease. We found that angiotensin-converting enzyme 2, through which SARS-CoV-2 enters the host cells, was expressed by thymic epithelium, and in particular by medullary TECs. We also demonstrated that SARS-CoV-2 can target TECs and downregulate critical genes and pathways associated with epithelial cell adhesion and survival. CONCLUSIONS: Our data demonstrate that the human thymus is a target of SARS-CoV-2 and thymic function is altered following infection. These findings expand our current knowledge of the effects of SARS-CoV-2 infection on T-cell homeostasis and suggest that monitoring thymic activity may be a useful marker to predict disease severity and progression.


Subject(s)
COVID-19 , Lymphopenia , Humans , COVID-19/metabolism , SARS-CoV-2 , Thymus Gland , Lymphopenia/genetics , Patient Acuity
3.
Biomolecules ; 12(3)2022 03 13.
Article in English | MEDLINE | ID: covidwho-1742313

ABSTRACT

Severe COVID-19 disease leads to hypoxemia, inflammation and lymphopenia. Viral infection induces cellular stress and causes the activation of the innate immune response. The ubiquitin-proteasome system (UPS) is highly implicated in viral immune response regulation. The main function of the proteasome is protein degradation in its active form, which recognises and binds to ubiquitylated proteins. Some proteasome subunits have been reported to be upregulated under hypoxic and hyperinflammatory conditions. Here, we conducted a prospective cohort study of COVID-19 patients (n = 44) and age-and sex-matched controls (n = 20). In this study, we suggested that hypoxia could induce the overexpression of certain genes encoding for subunits from the α and ß core of the 20S proteasome and from regulatory particles (19S and 11S) in COVID-19 patients. Furthermore, the gene expression of proteasome subunits was associated with lymphocyte count reduction and positively correlated with inflammatory molecular and clinical markers. Given the importance of the proteasome in maintaining cellular homeostasis, including the regulation of the apoptotic and pyroptotic pathways, these results provide a potential link between COVID-19 complications and proteasome gene expression.


Subject(s)
COVID-19 , Lymphopenia , COVID-19/genetics , Humans , Hypoxia , Inflammation/genetics , Lymphopenia/genetics , Prospective Studies , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism
4.
Signal Transduct Target Ther ; 5(1): 192, 2020 09 07.
Article in English | MEDLINE | ID: covidwho-748172

Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Gene Expression Regulation/immunology , Lymphopenia/immunology , Pneumonia, Viral/immunology , T-Lymphocytes/immunology , Adult , Aged , Aged, 80 and over , Betacoronavirus/immunology , Biomarkers/blood , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/genetics , Coronavirus Infections/mortality , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/mortality , Disease Progression , Female , Hepatitis A Virus Cellular Receptor 2/blood , Hepatitis A Virus Cellular Receptor 2/genetics , Hepatitis A Virus Cellular Receptor 2/immunology , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/blood , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , Lymphocyte Count , Lymphopenia/diagnosis , Lymphopenia/genetics , Lymphopenia/mortality , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/genetics , Pneumonia, Viral/mortality , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Survival Analysis , T-Lymphocytes/virology , Tumor Necrosis Factor Receptor Superfamily, Member 7/blood , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/blood , Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
5.
Cell Mol Immunol ; 17(9): 1001-1003, 2020 09.
Article in English | MEDLINE | ID: covidwho-690856
SELECTION OF CITATIONS
SEARCH DETAIL